824 research outputs found

    The new scintillating fiber detector of E835 at Fermilab

    Get PDF
    Abstract The scintillating fiber tracker for the measurement of the polar coordinate θ for experiment E835 at Fermilab has been upgraded, by adding two extra layers (240 fibers each), at R ≈9 cm from the beam axis. Photons from the fibers are detected by Visible Light Photon Counters (VLPCs). The high granularity, flexibility and fast response of the scintillating fibers, combined with the high quantum efficiency of the VLPCs, allow high rate capability, high efficiency, good tracking and time resolution. Signals from the outer two layers are used to provide θ information to the first-level trigger

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    A study of CP violation in B-+/- -> DK +/- and B-+/- -> D pi(+/-) decays with D -> (KSK +/-)-K-0 pi(-/+) final states

    Get PDF
    A first study of CP violation in the decay modes B±[KS0K±π]Dh±B^\pm\to [K^0_{\rm S} K^\pm \pi^\mp]_D h^\pm and B±[KS0Kπ±]Dh±B^\pm\to [K^0_{\rm S} K^\mp \pi^\pm]_D h^\pm, where hh labels a KK or π\pi meson and DD labels a D0D^0 or D0\overline{D}^0 meson, is performed. The analysis uses the LHCb data set collected in pppp collisions, corresponding to an integrated luminosity of 3 fb1^{-1}. The analysis is sensitive to the CP-violating CKM phase γ\gamma through seven observables: one charge asymmetry in each of the four modes and three ratios of the charge-integrated yields. The results are consistent with measurements of γ\gamma using other decay modes

    Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state

    Get PDF
    A search for the rare decays Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions are measured to be B(Bs0π+πμ+μ)=(8.6±1.5(stat)±0.7(syst)±0.7(norm))×108\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0π+πμ+μ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×108\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0J/ψ(μ+μ)K(890)0(K+π)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation.A search for the rare decays Bs0→π+π−μ+μ− and B0→π+π−μ+μ− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−μ+μ− and the first evidence of the decay B0→π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−μ+μ−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−μ+μ−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→μ+μ−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0→π+π−μ+μ− and B0→π+π−μ+μ− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−μ+μ− and the first evidence of the decay B0→π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−μ+μ−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−μ+μ−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→μ+μ−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0π+πμ+μ)=(8.6±1.5(stat)±0.7(syst)±0.7(norm))×108\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0π+πμ+μ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×108\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0J/ψ(μ+μ)K(890)0(K+π)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation

    Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -> p(p)over-bar

    Get PDF

    Observation of the B0 → ρ0ρ0 decay from an amplitude analysis of B0 → (π+π−)(π+π−) decays

    Get PDF
    Proton–proton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb−1 , are analysed to search for the charmless B0→ρ0ρ0 decay. More than 600 B0→(π+π−)(π+π−) signal decays are selected and used to perform an amplitude analysis, under the assumption of no CP violation in the decay, from which the B0→ρ0ρ0 decay is observed for the first time with 7.1 standard deviations significance. The fraction of B0→ρ0ρ0 decays yielding a longitudinally polarised final state is measured to be fL=0.745−0.058+0.048(stat)±0.034(syst) . The B0→ρ0ρ0 branching fraction, using the B0→ϕK⁎(892)0 decay as reference, is also reported as B(B0→ρ0ρ0)=(0.94±0.17(stat)±0.09(syst)±0.06(BF))×10−6
    corecore